Содержание лос. Очистные сооружения для автодорог

Все документы, представленные в каталоге, не являются их официальным изданием и предназначены исключительно для ознакомительных целей. Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ
СТАНДАРТ
РОССИЙСКОЙ
ФЕДЕРАЦИИ

ГОСТ Р
52485-
2005
(ИСО 11890-1:2000)

Материалы лакокрасочные

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ЛЕТУЧИХ
ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ (ЛОС)

Разностный метод

ISO 11890-1:2000 Paints and varnishes - Determination of volatile organic compound (VOC) content - Part 1: Difference method (MOD)

Москва
Стандартинформ
2007

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом (27 декабря 2002 г. № 184-ФЗ «О техническом регулировании », а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации Основные положения»

Сведения о стандарте

1 ПОДГОТОВЛЕН ООО «Научно-производственная фирма «Спектр-Лакокраска», Техническим комитетом по стандартизации ТК 195 «Материалы лакокрасочные» на основе аутентичного перевода стандарта, указанного в пункте 4, который выполнен ВНИИКИ. Номер регистрации: 1080/ISO

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 195 «Материалы лакокрасочные»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 декабря 2005 г. № 511-ст

4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 11890-1:2000 «Краски и лаки. Определение содержания летучих органических соединений. Часть 1. Разностный метод» (ISO 11890-1:2000 «Paints and varnishes - Determination of volatile organic compound (VOC) content - Part 1: Difference method»). При этом в него не включены ссылки на международные стандарты: ИСО 2811-2:1997 «Краски и лаки. Определение плотности. Часть 2. Метод погруженного тела (отвеса)», ИСО 2811-3:1997 «Краски и лаки. Определение плотности. Часть 3. Осцилляционный метод», ИСО 2811-4:1997 «Краски и лаки. Определение плотности. Метод давления чаши», не применяющиеся в государственной стандартизации Российской Федерации.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2004 (подраздел 3.5).

Фразы, показатели, их значения, включенные в текст настоящего стандарта для учета потребностей национальной экономики Российской Федерации, выделены курсивом

5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Июнь 2007 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотр, (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликован в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

ГОСТ Р 52485-2005
(ИСО 11890-1:2000)

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Дата введения - 2007-01-01

1 Область применения

Настоящий стандарт входит в серию стандартов на отбор проб и проведение испытаний лакокрасочных материалов.

Стандарт устанавливает метод определения содержания летучих органических соединений (ЛОС) в лакокрасочных материалах и сырье. Настоящий метод применяют при ожидаемой массовой доле ЛОС более 15 %. Если ожидаемая массовая доля ЛОС от 0,1 % до 15 %, используют метод по ГОСТ Р 52486.

Метод основан на предположении, что летучее вещество является водой или органическим соединением. Когда в лакокрасочном материале присутствуют другие летучие неорганические соединения, их содержание определяют другим более подходящим методом и учитывают результаты такого определения при расчетах.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

* Примечание 2 носит справочный характер и не применимо в Российской Федерации.

3.3 фотохимически неактивное соединение : Органическое соединение, которое не участвует в атмосферных фотохимических реакциях (3.2, примечание 2).

3.4 готовый к применению: Состояние материала, наступающее после его смешивания в правильных пропорциях в соответствии с инструкциями изготовителя и разбавления при необходимости соответствующими растворителями таким образом, что материал готов к применению утвержденным методом.

4 Сущность метода

После приготовления образца определяют массовую долю нелетучего вещества по ГОСТ Р 52486, затем определяют содержание воды по ГОСТ 14870. При необходимости определяют содержание фотохимически неактивных соединений по ГОСТ Р 52486. После этого рассчитывают содержание ЛОС в образце.

5 Необходимая дополнительная информация

Для обеспечения возможности применения метод испытания, установленный в настоящем стандарте, должен быть дополнен необходимой информацией. Перечень дополнительной информации приведен в .

6 Отбор проб

Отбирают среднюю пробу материала для испытания (или каждого материала в случае многослойной системы) по ГОСТ 9980.2 .

Проводят контроль и подготавливают каждый образец для испытаний до состояния «готов к применению» по ГОСТ 9980.2 .

7 Проведение испытаний

7.1 Количество определений и условия испытаний

Если нет других указаний, проводят по два параллельных испытания при температуре (23 ± 2) °С и относительной влажности (50 ± 5) % (ГОСТ 29317).

7.2 Определение параметров

Определяют параметры, необходимые для расчета ( -), в соответствии с требованиями 7.3-7.6. Некоторые параметры можно определить по разности их значений в зависимости от природы соединений, присутствующих в образце.

7.3 Плотность

Если требуется для расчета ( -), определяют плотность образца по ГОСТ 28513 . Определение плотности проводят при температуре (23 ± 2) °С.

7.4 Массовая доля нелетучих веществ

Если нет других указаний, определение массовой доли нелетучих веществ проводят по ГОСТ Р 52487 .

7.5 Массовая доля воды

Определяют массовую долю воды в процентах по ГОСТ 14870, выбирая реагенты таким образом, чтобы они не препятствовали анализу соединений, содержащихся в образце. Если состав таких соединений неизвестен, их подвергают качественному анализу, например по ГОСТ Р 52486.

Примечания

1 Типичными соединениями, которые могут препятствовать проведению анализа, являются кетоны и альдегиды. Для правильного выбора реагентов следует ориентироваться на сведения, которые обычно публикуют производители.

2 Если свойства материала, подлежащего испытанию, точно определены, и известно, что он не содержит воду, то определение содержания воды в нем можно не проводить, приняв его равным нулю.

Состав реактива Фишера указывают в нормативном документе на конкретный лакокрасочный материал.

7.6 Фотохимически неактивные соединения (только в случае применения национального законодательства)

7.6.1 Если образец содержит неизвестные органические соединения, их следует подвергнуть качественному анализу, например по ГОСТ Р 52486.

7.6.2 Определяют содержание в образце фотохимически неактивных соединений по ГОСТ Р 52486.

7.6.3 Определяют плотность фотохимически неактивных соединений по методу, указанному в , или путем использования опубликованных справочных данных.

8 Расчет

8.1 Общие положения

Рассчитывают содержание ЛОС по методу, указанному в нормативном документе на конкретный лакокрасочный материал . Если в НД не указывается какой-либо конкретный метод, то содержание ЛОС рассчитывают по методу 1.

Метод 1 является предпочтительным методом расчета благодаря тому, что он обеспечивает высокую прецизионность результатов за счет отсутствия операции определения плотности (что является потенциальным источником дополнительных ошибок).

8.2 Метод 1: массовую долю ЛОС, %, в материале, «готовом к применению», рассчитывают по формуле:

ЛОС = 100 - NV - m w ,(1)

где ЛОС - массовая доля ЛОС в материале, «готовом к применению», %;

NV - массовая доля нелетучего вещества (), %;

m w - массовая доля воды (), %.

8.3 Метод 2: массовую концентрацию ЛОС, г/дм 3 , в материале, «готовом к применению», рассчитывают по формуле:

ЛОС = (100 - NV - m w ) 10ρ s ,(2)

где ЛОС - массовая концентрация ЛОС в материале, «готовом к применению», г/дм 3 ;

NV - массовая доля нелетучего вещества (), %;

m w - массовая доля воды (), %;

ρ s - плотность образца при температуре (23 + 2) °С (), г/см 3 ;

10 - переводной коэффициент.

8.4 Метод 3; массовую концентрацию ЛОС, г/дм 3 , в материале, «готовом к применению», исключением воды, рассчитывают по формуле:

,(3)

где ЛОС 1 w - массовая концентрация ЛОС в материале, «готовом к применению», за исключением воды, г/дм 3 ;

NV - массовая доля нелетучего вещества (), %;

m w - массовая доля воды (), %;

ρ s - плотность образца при температуре (23 ± 2) °С (), г/см 3 ;

ρ w - плотность воды при температуре 23 °С, г/см 3 ; (ρ w = 0,997537 г/см 3 );

8.5 Метод 4: массовую концентрацию ЛОС, г/дм 3 , в материале, «готовом к применению», исключением воды и фотохимически неактивных соединений (используется только в случае применения национального законодательства), рассчитывают по формуле:

,(9)

где ЛОС 1wе - массовая концентрация ЛОС в материале, «готовом к применению», за исключение воды и фотохимически неактивных соединений, г/дм 3 ;

NV - массовая доля нелетучего вещества в образце (), %;

m w - массовая доля воды в образце (), %;

m eci - массовая доля i-го фотохимически неактивного соединения (), %;

ρ s - плотность образца при температуре (23 ± 2) °С (), г/см 3 ;

ρ w - плотность воды при температуре 23 °С, г/см 3 ; (ρ w = 0,997537 г/см 3 );

ρ eci - плотность i-го фотохимически неактивного соединения (), г/см 3 ;

1000 - переводной коэффициент.

9 Обработка результатов

Если результаты двух параллельных испытаний отличаются на значение большее, чем указано , испытание повторяют.

Рассчитывают среднее значение двух достоверных результатов повторных испытаний и указывают в протоколе результат с точностью до 1 %.

10 Прецизионность

10.1 Общие положения

Прецизионность метода испытания была определена по результатам межлабораторного испытания, проведенного по ГОСТ Р ИСО 5725-1 и ГОСТ Р ИСО 5725-2 . Были проведены испытания трех различных материалов в 5-7 лабораториях. Некоторые из полученных результатов при вычислении прецизионности данного метода не учитывались, поскольку выходили за пределы области его применения (таблица 1, сноска ). Массовая доля ЛОС для этих материалов составляла менее 15 %, но они были испытаны только для лучшего сравнения с уровнем прецизионности, который обеспечивает метод испытания по ГОСТ Р 52486.

10.2 Предел повторяемости результатов r

Предел повторяемости результатов r - это значение, ниже которого предположительно будет находиться абсолютное значение разности между результатами двух отдельных испытаний, каждый из которых является средним значением результатов двух параллельных испытаний, выполненных на идентичном материале одним оператором в одной лаборатории в течение короткого периода времени по одному стандартизированному методу.

Повторяемость результатов для пяти повторных определений по этому методу, выраженная в виде коэффициента вариации повторяемости, составляет 1 %.

10.3 Предел воспроизводимости результатов R

Предел воспроизводимости результатов R - это значение, ниже которого предположительно будет находиться абсолютное значение разности между результатами двух испытаний, каждый из которых является средним значением результатов двух параллельных испытаний, полученных на идентичном материале операторами в различных лабораториях по одному стандартизированному методу.

Воспроизводимость результатов по этому методу, выраженная в виде коэффициента вариации воспроизводимости, составляет 2 %.

Таблица 1 - Результаты межлабораторного испытания

Показатель

Краска для нанесения методом катафореза a)

Водно-дисперсионная краска a)

Двухупаковочный лак

Количество лабораторий

Количество повторных определений

Среднее значение массовой доли, %

Среднеквадратичное отклонение воспроизводимости

Коэффициент вариации воспроизводимости

Среднеквадратичное отклонение повторяемости

Коэффициент вариации повторяемости

а) Данные не учитывались при определении прецизионности метода, так как среднее значение массовой доли ЛОС для этих материалов - менее 15 %.

11 Протокол испытания

Протокол испытания должен содержать следующие данные:

b) все сведения, необходимые для полной идентификации испытуемого материала (наименование изготовителя, торговая марка, номер партии и т.д.);

с) пункты дополнительной информации, на которые дается ссылка в ;

е) результаты испытания по, используемый метод расчета ( , , или );

f) любое отклонение от заданного метода испытания;

g) дату проведения испытания.

Приложение А
(обязательное)

Необходимая дополнительная информация

Для обеспечения возможности использования метода, указанного в настоящем стандарте, должна быть предоставлена дополнительная информация, перечисленная в настоящем приложении.

Необходимую информацию предпочтительно следует согласовать между заинтересованными сторонами, используя в качестве ее источника, частично или полностью, соответствующий международный или национальный стандарт или другой технический документ, относящийся к испытуемому продукту.

Обозначение и наименование ссылочного международного стандарта и условное обозначение степени его соответствия ссылочному национальному стандарту

ИСО 5725-2:1994 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений» (IDТ)

ГОСТ Р 52486-2005 (ИСО 11890-2:2000)

ИСО 11890-2:2000 «Краски и лаки. Определение содержания летучих органических соединений (ЛОС). Часть 2. Газохроматографический метод» (MOD)

ИСО 1513:1992 «Лаки и краски. Контроль и подготовка образцов для испытаний» (MOD); ИСО 15528:2000 «Краски, лаки и сырье для них. Отбор проб» (NEQ)

ГОСТ 14870-77

ИСО 760:1978 «Определение воды. Метод Карла Фишера (основной метод)» (NEQ)

ИСО 4618-1:1998 «Краски и лаки. Термины и определения для лакокрасочных материалов. Часть 1. Общие термины» (NEQ)

ИСО 2811-1:1997 «Краски и лаки. Определение плотности. Часть 1. Пикнометрический метод» (NEQ)

ГОСТ 29317-92

ИСО 3270:1984 «Краски, лаки и сырье для них. Температура и влажность для кондиционирования и испытания» (MOD)

Примечание - В настоящей таблице использованы следующие условные обозначения степени соответствия стандартов:

IDT - идентичные стандарты;

MOD - модифицированные стандарты;

NEQ - неэквивалентные стандарты.

Библиография

ASTM D 3960-98 Standard practice for determining volatile organic compound (VOC) content of paints and related coatings

Ключевые слова : лакокрасочные материалы, сырье, летучее органическое соединение (ЛОС), прецизионность, массовая доля, массовая концентрация, плотность, разностный метод, определение содержания воды, реактив Фишера, готовый к применению материал

Вы, наверное, привыкли покупать краску либо по торговой марке, либо по цвету, как Бенджамин Мур, или синий.

Но когда дело доходит до покрытия ваших стен и потолка, есть гораздо более важное решение, которое вы должны принять, что имеет отношение к химическим веществам, фактически используемым для изготовления самой краски.

Одно из наиболее токсичных фактически представляют собой группу, именуемую как «летучие органические соединения» или ЛОС.

ЛОС представляют собой большую группу химических веществ на основе углерода, которые легко испаряются при комнатной температуре, что делает их легко вдыхаемыми. Одними из наиболее распространенных источников ЛОС в наших домах являются бытовые краски. ЛОС используются в качестве растворителей или разбавителей, которые работают вместе со смолами, которые связывают воедино все ингредиенты краски и заставляет их держаться на стене. Другими словами, они могут улучшить производительность и долговечность.

Тем не менее ЛОС «выделяет газ» в воздух, пока краска высыхает. Большинство людей могут чувствовать запах при высокой концентрации некоторых летучих органических соединений, хотя другие летучие органические соединения не имеют запаха. Запах не указывает на то, насколько опасны химические вещества, говорит Департамент здравоохранения Миннесоты. Вне зависимости от того, насколько сильно они пахнут, многие летучие органические соединения, которые могут включать формальдегид, ацетон, бензол и перхлорэтилен, могут сделать вас больным различными способами.

Вот почему я составила этот список из 6 причин, почему вы никогда не должны использовать краску, которая содержит летучие органические соединения.

1) Ухудшение симптомов астмы. Если вы уже страдаете от астмы, вдыхая воздух, загрязненный ЛОС, можно спровоцировать астматическую реакцию. Ученые изучили 400 малышей и дошкольников и обнаружили, что дети, которые вдыхали дым от красок на водной основе и растворителей в два-четыре раза чаще страдают от аллергии или астмы.

2) Появление гриппоподобных симптомов. Даже если вы не страдаете от астмы при вдыхании паров краски, вы могли ощущать насморк, зуд в глазах, боли в суставах и другие симптомы, которые сильно напоминают грипп. Растворители, которые испаряются в воздух от краски, при вдыхании всасывается в легкие, а затем в кровоток. Они могут раздражать глаза, нос и горло и заставить вас чувствовать себя, как если бы вы заразились гриппом.

3) Потенциальное вызывание рака. Многие химические вещества в семье ЛОС считаются канцерогенными Агентством по охране окружающей среды США. По словам Всемирной организации здравоохранения, профессиональные маляры подвергаются 20-процентному увеличению риска заражения рядом онкологических заболеваний, особенно раком легких.

4) Головокружение и потеря сознания. Иногда химические вещества, которые выделяют газ в ЛОС-содержащих красках настолько подавляющие, что они заставляют людей чувствовать сильное головокружение и, в крайних случаях, терять сознание. Это может быть особенно опасно, если вы находились на вершине лестницы, возможно, при покраске потолка, где вы вдыхали пары краски очень близко к источнику.

5) Проблемы бесплодия. Исследование Шеффилдского и Манчестерского университетов предполагает, что мужчины, которые регулярно подвергаются воздействию химических веществ в краске, могут быть более склонны к проблемам с фертильностью. Маляры и декораторы являются основными жертвами. Тем не менее исследователи обнаружили увеличение на 250 процентов «риска подвижности сперматозоидов» среди мужчин, подвергшихся воздействию химических веществ, широко используемых в качестве растворителей для красок на водной основе, которые могли бы дать любому парню паузу в использовании красок, содержащих ЛОС.

6) Проблема «слабоумия маляра». В дополнение к повышенной вероятности возникновения рака легких, у маляров может развиться неврологическое состояние, спровоцированное длительным воздействием растворителей красок под названием «деменция маляра».

Что вы можете использовать вместо

Вы могли бы решить отказаться от красок, которые содержат ЛОС, потому что это было бы правильно по отношению к вашему маляру!

Все чаще можно купить краску, которая не содержит летучих органических соединений в интернете и в магазинах, которые специализируются на поставках безопасных для здоровья и экологии строительных материалов. Consumer Reports предлагает этот полезный путеводитель по содержанию летучих органических соединений, чтобы выбирать, когда вы ходите по магазинам; если вы являетесь абонентом, вы можете увидеть, как они оценивают различные без или с низким содержанием ЛОС красок, которые доступны на рынке.

Большинство крупных брендов, в том числе Home Depot, Benjamin Moore и Pittsburgh Paints, сделали выбор без летучих органических соединений. Только будьте осторожны, когда краски смешиваются, так как базовая краска может быть без ЛОС, но цвет пигмента может содержать летучие органические соединения. Вы хотите, чтобы вся смесь быть без ЛОС.

Краски на водной основе будут иметь меньше летучих органических соединений, чем масляные краски. Тем не менее нет никакой гарантии, что только потому, что краска на водной основе, она будет ЛОС свободной. Вы должны явно попросить краску без ЛОС, прежде чем купить.

Независимо от краски, которую вы используете, убедитесь, что помещение или дом хорошо проветривается во время его окрашивания. Включите вентиляторы и откройте окна и двери. Если это возможно, не спите в комнате, которая была свежеокрашенной; особенно не спите или используйте комнату, если краска на стенах не полностью высохла. Если вы просыпаетесь с головной болью или дискомфортом, не спите в комнате в течение нескольких дней, пока вы не будете уверены, что она без запаха.

Для уменьшения количества загрязняющих веществ и стоков с автодорог непосредственно на проезжей части применяют следующие меры:

  • Сбор ливневых вод с автодорог через водосборные лотки и предбордюрные углубления для дальнейшего отвода на очистные сооружения.
  • Недопущение эрозии земляных откосов и околодорожной территории, своевременная очистка водосборных канав, обочин и откосов.
  • Регулярная очистка поверхности дороги, уборка водоотводных систем.
  • Своевременный ремонт дорожного полотна.
  • Контроль за употреблением противогололедных реагентов.
  • Запрет на сброс убранного зимой снега в водоемы или на ледовую поверхность.
  • Подбор безопасных для окружающей среды материалов для дорожной разметки.

На участках дороги с разрушенным дорожным покрытием накапливаются загрязнители и частицы асфальтового материала, которые во время дождя растекаются в виде суспензии и попадают в поверхностные сточные воды. Для того чтобы загрязненные строительные стоки – например, во время ремонта дорожного полотна,- не попадали в водосборные устройства, нужно организовать отвод загрязненных стоков в специально устроенную инфильтрационную траншею.

Минимизация применения противогололедных реагентов для снижения вредного воздействия на окружающую среду возможна при правильном расчете нормы употребления реагентов. Если дорога проходит вблизи водоема, имеет смысл установить специальные барьеры, отводящие загрязненные стоки от водного объекта. Наиболее перспективны для этого экраны из полимерных материалов.

Поиск новых противогололедных средств, сочетающих в себе эффективность, экономичность и безопасность для окружающей среды - актуальная проблема сегодняшнего дня.

Инженерная очистка сточных вод


Собранный с поверхности автодороги ливневый и талый сток в наиболее благоприятном варианте направляется на очистные сооружения . При выборе типа очистного сооружения необходимо учесть сопряжение его с дренажной системой водоотвовода дороги.

Выбор конструкции очистного сооружения зависит от климатических и гидрологических характеристик территории, а также от характеристик загрязняющих веществ.

Загрязняющие вещества разделяются по физическому состоянию (растворимые, нерастворимые, коллоидные системы) и по химическому составу. Важная характеристика взвешенных частиц, влияющая на выбор очистного оборудования - дисперсность (размер и форма частиц).

Типы очистных сооружений

На очистных сооружениях последовательно реализуются все или несколько из следующих этапов очистки стоков: механическая очистка, химическая очистка, физико-химическая и биологическая очистка.

Механическая очистка стоков от загрязнителей осуществляется с помощью механических решёток , песколовок, отстойников, нефтеловушек, гидроциклонов, фильтров, растительных полос и т. д.

Сооружения механической очистки открывают путь стоков, поступающих на очистные сооружения. Механическая очистка удаляет из стоков крупный мусор, существенно понижает содержание взвешенных веществ и подготавливает стоки к дальнейшим стадиям очистки.

Следующий вид - химическая очистка стоков . Химические методы применяют после механической очистки и перед поступлением стоков на биологическую очистку, либо используют как конечный этап доочистки (хлорирование, озонирование).

В качестве методов химической очистки в промышленных масштабах применяют нейтрализацию (для кислых или щелочных стоков) и окисление.

Физико-химические методы очистки относятся к глубоким стадиям очистки. Это методы флотации , коагуляции (осветления), адсорбции, ионного обмена, экстракции и т. д. Использование этих методов позволяет убрать из воды большинство токсичных химических соединений, находящихся в растворенном виде.

Для очистки больших расходов сточных вод методом адсорбции используют конструкции следующих типов: безнапорные адсорберы, инфильтрационные траншеи, дренажные колодцы.

Биохимические методы очистки основаны на способности некоторых микроорганизмов перерабатывать растворенные химические соединения.

Биологические методы очистки имеют свои особенности, связанные с нормальным функционированием микрорганизомов - необходимо, чтобы концентрации химических веществ были в заданных рамках, и чтобы в стоках отсутствовали тяжелые металлы. Биологическая очистка может быть аэробной (при активном доступе воздуха) и анаэробной (бескислородной).

Аэробная очистка ведется в очистных сооружениях следующих видов: аэротенки, окситенки, биофильтры, биологические пруды.

Анаэробная очистка (метановое брожение или ферментизация) ведется без доступа воздуха в специально оборудованных реакторах (метантенки, септики, аноксикаторы) и позволяет биологически переработать даже самые трудноокисляемые химические соединения.

Наибольший эффект улучшения качества воды дает комбинация аэробного и анаэробного методов очистки.

Если устройство очистных сооружений вблизи автодороги невозможно, следует устанавливать конструкции в виде железобетонных щитовых ограждений.

Для очистки поверхностных стоков с автодорог и мостов наиболее перспективно устройство комплексных очистных сооружений , дающих максимальный эффект очистки загрязненных стоков.

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 ПОДГОТОВЛЕН ОАО «Научно-производственная фирма «Спектр ПК» на основе аутентичного перевода на русский язык указанного в пункте стандарта, который выполнен ФГУП «СТАНДАРТИНФОРМ»

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 195 «Материалы лакокрасочные»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 ноября 20 10 г. № 796-ст

Прибор должен иметь испаритель, температура которого должна регулироваться с точностью до 1 ° С, и делитель потока. Необходимо иметь возможность регулировать и контролировать деление потоков. Вкладыш делителя потока должен содержать обработанную силаном стекловату для удерживания нелетучих компонентов. В конструкции прибора должна быть предусмотрена возможность очистки вкладыша и заполнения его новой набивкой из стекловаты или, при необходимости, замены на новый. Это связано с необходимостью исключения ошибок, вызванных накоплением пленкообразующего вещества или пигмента (т.е. адсорбции соединений). На появление адсорбции указывает появление хвостов у пиков, особенно явно выраженных в случае низколетучих компонентов.

Система холодного ввода образца должна быть снабжена нагревателем с программированием температуры в диапазоне от температуры окружающей среды до 300 ° С и должна иметь входное отверстие в делителе потока, изготовленное из инертного материала, например стекла. Делитель потока должен иметь набивку из стекловаты, обработанную силаном, и поддерживаться в рабочем состоянии, как указано в . Необходимо иметь возможность регулирования и контроля деления потока.

Прецизионность метода можно повысить, если систему ввода образца, особенно в случае горячего ввода, подсоединить к автоматическому дозатору. Необходимо следовать инструкциям изготовителя прибора при использовании автоматического дозатора.

6.2.4 Выбор системы ввода образца

Выбор между системами горячего и холодного ввода образца зависит от типа испытуемого материала. Систему холодного ввода необходимо использовать для материалов, которые при высоких температурах выделяют вещества, вызывающие наложение пиков.

Протекание реакций расщепления или разложения может быть установлено по изменениям на хроматограмме (например, появление неизвестных пиков и увеличение или уменьшение размера пика) при различных температурах испарителя.

Система горячего ввода образца охватывает все летучие компоненты образца, продукты расщепления пленкообразующих веществ и добавок. Продукты расщепления пле нк ообразующих веществ или добавок, идентичные компонентам материала, могут быть отделены с помощью системы холодного ввода, поскольку они элюируются позднее в результате программируемого повышения температуры испарителя.

Система ввода пробы должна быть указана в НД или ТД на конкретный ЛКМ .

6.3 Термостат

Термостат должен обеспечивать нагрев до температуры от 40 ° С до 300 ° С как в изотермическом режиме, так и в условиях программируемого изменения температуры. Он должен поддерживать температуру в пределах ±1 ° С. Конечная температура программы нагрева не должна превышать максимальную рабочую температуру колонки ().

6.4 Детектор

Можно использовать любой из трех следующих детекторов или другие детекторы, пригодные для определения ЛОС.

6.4.1 Пламенно-ионизационный детектор (ПИД), работающий при температурах до 300 ° С. Для предотвращения конденсации температура детектора должна быть не менее чем на 10 ° С выше максимальной температуры термостата. Газоснабжение детектора, объем ввода образца, отношение деления потока и регулирование усиления должны быть оптимизированы таким образом, чтобы сигналы (площади пиков), используемые для расчета, были пропорциональными количеству вещества.

6.4.2 Масс-спектрометр, отградуированный и настроенный, или другой масс-избирательный детектор.

6.4.3 ИК -спектрометр Фурье, отградуированный согласно инструкции изготовителя .

Колонка должна быть изготовлена из стекла или плавленого кварца.

Доказано, что хорошей разделительной способностью для разделения ЛОС обладают колонки достаточной длины, максимальным внутренним диаметром 0,32 мм, покрытые пленкой из полидиметилсилоксана или полиэтиленгликоля соответствующей толщины.

Неподвижная фаза и длина колонки должны быть выбраны таким образом, чтобы обеспечивать требуемое разделение (приложение , примеры).

Сочетание длины колонки, температурной программы и вещества-метки выбирают таким образом, чтобы температуры кипения ЛОС в образце были ниже температуры кипения вещества-метки, т.е. ЛОС должны элюировать до вещества-метки, а соединения, не являющиеся ЛОС, - после вещества-метки. Если для определения содержания ЛОС используют полярную стационарную фазу, то рекомендуется использовать вещества-метки, приведенные в , в сочетании с DB - 13 01™ колонкой или ее эквивалентом длиной не менее 60 м, внутренним диаметром 0,32 мм и толщиной пленки 1 мкм.

Длина , внутренний диаметр колонки и толщина пленки должны быть указаны в НД или ТД на конкретный ЛКМ .

В случае, когда разделенные компоненты идентифицируют с использованием масс-избирательного детектора или ИК-спектрометра Фурье, эти приборы должны быть подсоединены к газовому хроматографу и эксплуатироваться согласно инструкциям изготовителя.

6.7 Шприц для ввода пробы

Вместимость шприца должна быть не менее чем в два раза больше объема образца, вводимого в газовый хроматограф.

6.8 Записывающее устройство

Для записи хроматограммы применяют компенсационные самописцы.

6.9 Интегратор

Для измерения площади пиков используют электронную систему обработки данных (интегратор или компьютер). Параметры интегрирования для градуировки и анализа должны быть идентичными.

Используют емкости ( колбы , пробирки , бутылки ), изготовленные из химически стойких материалов, например из стекла, которые должны плотно закрываться.

6.11 Газовые фильтры

В соединительных трубках газового хроматографа должны быть фильтры для адсорбции остаточных примесей в подаваемых газах ().

6.12.1 Газ-носитель: сухой, не содержащий кислорода гелий, азот или водород чистотой не менее 99,996 % об.

6.12.2 Газы для питания детектора: водород чистотой не менее 99,999 % об. и воздух, свободный от органических соединений.

6.12.3 Вспомогательный газ: азот или гелий той же чистоты, что и газ-носитель.

7 Реактивы

Внутренним эталоном должно быть вещество, которое отсутствует в образце и полностью отделяется от других компонентов на хроматограмме. Оно должно быть инертным по отношению к компонентам образца, устойчивым в требуемом интервале температур и известной чистоты. Установлено, что для многих ЛКМ пригодны такие соединения, как изобутанол и диметиловый эфир диэтиленгликоля. Обычно внутренний эталон подбирают экспериментальным путем .

Внутренний эталон должен быть указан в НД или ТД на конкретный ЛКМ .

7.2 Соединения для градуировки

Соединения, используемые для градуировки, должны иметь чистоту не менее 99 % масс , или быть известной чистоты.

Соединение для градуировки должно быть указано в НД или ТД на конкретный материал .

Для разбавления пробы используют органический растворитель. Он должен иметь чистоту не менее 99 % масс , или быть известной чистоты. Растворитель не должен содержать соединения, которые дают пики, перекрывающиеся на хроматограмме. Растворитель всегда испытывают отдельно, чтобы обнаружить загрязнения и возможное наложение пиков, особенно при анализе следов веществ. Растворитель должен быть указан в НД или ТД на конкретный ЛКМ .

Примечание - Было установлено, что такие растворители, как метанол и тетрагидрофуран, отвечают этим требованиям.

Для определения ЛОС необходимо использовать вещество-метку известной чистоты и температурой кипения, равной максимальному пределу (250 ± 3) ° С.

Пример - В качестве вещества - метки может быть использован : для неполярных систем - тетрадекан , имеющий температуру кипения , равную 252 , 6 °С ; для полярных систем - диэтиладипат , имеющий температуру кипения , равную 251 °С .

8 Отбор проб

Отбирают среднюю пробу ЛКМ (или каждого материала в случае многослойной системы) по ГОСТ 9980.2 .

Контроль и подготовка каждой пробы - по ГОСТ 9980.2 .

9 Проведение испытаний

Плотность испытуемого образца определяют по ГОСТ Р 53654.1 , если это требуется для расчета ( , ). Определение плотности проводят при температуре (23 ± 2) ° С, если другие условия не оговорены .

Массовую долю воды определяют в процентах по ГОСТ 14870 (метод 2), выбирая реагенты таким образом, чтобы они не препятствовали анализу соединений, содержащихся в образце. Если соединения неизвестны, то их определяют качественным анализом ().

Примечания

1 Типичными соединениями, которые могут препятствовать проведению анализа, являются кетоны и альдегиды. Для правильного выбора реагентов следует ориентироваться на сведения, которые представлены производителем.

2 Если свойства материала, подлежащего испытанию, точно определены и известно, что он не содержит воду, то определение содержания воды в этом материале можно не проводить, приняв его равным нулю.

Используемый реактива Фишера должен быть указан в НД или ТД на конкретный материал .

9.3.1 Условия проведения газохроматографического определения ЛОС зависят от испытуемого материала и каждый раз должны быть оптимизированы с использованием известной градуировочной смеси (приложение , в котором приведены примеры условий, используемых для систем горячего и холодного ввода проб).

9.3.2 Объем ввода образца и отношение деления потока должны быть скоординированы таким образом, чтобы не превышать возможности колонки и оставаться в пределах линейного диапазона детектора. Асимметричные пики указывают на перегрузку газохроматографической системы.

9.4.1 Если органические соединения в материале неизвестены, их определяют качественным анализом. Наиболее предпочтительным для этой цели считается газовый хроматограф, подсоединенный к масс-избирательному детектору или ИК-спектрометру Фурье (), который запрограммирован на те же параметры настройки, которые заданы в .

9.5 Градуировка

9.5.1 Если имеются в наличии соответствующие соединения, то поправочный коэффициент определяют по следующей методике.

9.5.1.1 Взвешивают в емкости () с точностью до 0,1 мг органические соединения, определенные по , в количествах, которые должны соответствовать их содержанию в испытуемом образце.

Взвешивают в емкости такое же количество внутреннего эталона (), разбавляют смесь растворителем () и вводят ее в хроматограф при тех же условиях, что и испытуемый образец.

9.5.1.2 Оптимизируют параметры настройки прибора в соответствии с .

В емкости взвешивают от 1 до 3 г пробы с точностью до 0,1 мг и внутренний эталон в количестве, которое должно соответствовать содержанию испытуемого материала в емкости, разбавляют соответствующим количеством растворителя, тщательно закрывают емкость и перемешивают содержимое.

Примечание - Пробы, содержащие пигменты или другие компоненты, затрудняющие проведение испытания, можно разделить центрифугированием.

9.7 Количественное определение содержания ЛОС

9.7.1 Устанавливают параметры настройки хроматографа, как во время оптимизации при градуировке.

9.7.2 С помощью отдельного газохроматографического анализа определяют время удерживания вещества-метки. Это время удерживания определяет граничную точку суммирования для вычисления содержания ЛОС по хроматограмме. Используют колонку, которая дает периоды элюирования, соотнесенные с точкой кипения.

Вычисляют массу каждого соединения т , г, присутствующего в 1 г ЛКМ , по формуле

(2)

где r i - поправочный коэффициент для i -го соединения ();

A i - площадь пик а i - го соединения;

m is - масса внутреннего эталона в испытуемом образце (), г;

m s - масса испытуемого образца (), г;

A is - площадь пика внутреннего эталона.

Примечание - Некоторые растворители такие, как бензин-нафта, при элюировании дают несколько пиков. При помощи большинства записывающих интеграторов общая площадь пиков может быть суммирована и обработана как один пик, если в этом интервале не элюируют другие соединения. Если конструкция интегратора не предусматривает такой операции в автоматическом режиме, то общую площадь суммируют вручную. Тогда приведенная выше формула может быть использована для определения количества растворителя в испытуемом образце.

9.7.4 Проводят два параллельных определения.

10 Расчеты

10.1 Общие положения

Рассчитывают среднее значение содержания ЛОС как среднеарифметическое значение двух результатов параллельных определений по методу, установленному в НД или ТД на конкретный ЛКМ . Если в НД или ТД не указан какой-либо конкретный метод, то содержание ЛОС рассчитывают по методу 1 .

Метод 1 является наиболее предпочтительным в связи с тем, что он обеспечивает высокую точность результатов за счет отсутствия операции определения плотности (что является потенциальным источником дополнительных ошибок).

Применение настоящего метода испытаний возможно только при использовании перечислений а) - d ), приведенных в настоящем приложении.

Необходимая информация может быть предметом согласования между заинтересованными сторонами или может быть получена частично или полностью из настоящего стандарта или других документов, относящихся к материалу, подвергаемому испытанию.

a

b ) Условия, при которых следует проводить испытание (раздел ).

c ) Используемое вещество-метка (

термостата: начальная температура - 10 0 °С;

Время выдержки в изотермическом режиме - 1 мин;

Скорость нагрева - 20 °С/мин;

Конечная температура - 260 °С;

21 мин.

Температура детектора: 260 °С

Газ-носитель: гелий;

12 4 кПа;

Линейно распределенная скорость потока: 27,3 см/с при температуре термостата 100 °С.

Колонка: длина - 60 м;

Пленка, содержащая 6 % цианопропилфенила и 94 % метилполиксилоксана; толщина пленки - 1 мкм.

В . 2 Холодный ввод водно-дисперсионного материала

Температурная программа

системы холодного ввода: температура ввода - 30 °С;

Скорость нагрева - 10 °С/с;

Первая температура выдержки - 100 °С;

Время выдержки - 10 с;

Скорость нагрева - 10 °С/с;

Вторая температура выдержки - 260 °С;

Время выдержки - 240 с.

Делитель потока : соотношение потоков - 1 :20;

Объем ввода - 0,2 мм 3 .

Температурная программа

термостата: начальная температура - 50 °С;

Скорость нагрева - 8 °С/мин;

Конечная температура - 240 °С;

Время выдержки в изотермическом режиме - 10 мин.

Температура детектора: 280 °С.

Газ-носитель: водород;

Давление на входе в колонку - 15 0 кПа.

Колонка: длина - 50 м;

Внутренний диаметр - 0,32 мм;

Толщина пленки - 1,0 мкм.

В . 3 Горячий ввод материала, не содержащего воды

Температура дозатора: 250 °С.

Делитель потока : соотношение потоков - 1 : 10 0;

Объем ввода - 0,2 мм 3 , автоматический ввод.

Температурная программа

Конечная температура - 17 5 °С;

Время выдержки в изотермическом режиме - 15 мин.

Газ-носитель: гелий.

Колонка: давление на входе в колонку - 15 0 кПа;

Внутренний диаметр - 0,2 мм;

Пленка - полидиметилсилоксан;

Толщина пленки - 0,25 мкм.

В .4 Холодный ввод материала, не содержащего воды

Температурная программа

системы холодного ввода: температура ввода - 40 °С;

Скорость нагрева - 10 °С/с;

Первая температура выдержки - 10 0 °С;

Время выдержки - 10 с;

Скорость нагрева - 10 °С/с;

Вторая температура выдержки - 250 °С;

Время выдержки - 200 с.

Делитель потока : соотношение потоков - 1 :20;

Объем ввода - 0,2 мм 3 .

Температурная программа

термостата: начальная температура - 40 °С;

Скорость нагрева - 3 °С/мин;

Конечная температура - 17 5 °С;

Время выдержки в изотермическом режиме - 10 мин.

Температура детектора: 260 °С.

Газ-носитель: гелий;

Давление на входе в колонку - 17 0 кПа.

Колонка: длина - 50 м;

Внутренний диаметр - 0,32 мм;

Пленка - полидиметилсилоксан;

Толщина пленки - 0,25 мкм.

Ключевые слова: лакокрасочные материалы, летучие органические соединения, газохроматографический метод, капиллярные колонки, горячий ввод, холодный ввод

Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 11890-2:2000 «Краски и лаки. Определение содержания летучих органических соединений (ЛОС). Часть 2. Газохроматографический метод» (ISO 11890-2:2000 « Paints and varnishes - Determination of volatile organic compound (VOC ) content - Part 2: Gas -chromatographic method »). При этом в него не включены ссылки на международные стандарты: ИСО 2811-2:1997 «Краски и лаки. Определение плотности. Часть 2. Метод погруженного тела (отвеса)», ИСО 2811-3:1997 «Краски и лаки. Определение плотности. Часть 3. Осцилляционный метод», ИСО 2811-4:1997 «Краски и лаки. Определение плотности. Метод давления чаши», не применяющиеся в государственной стандартизации Российской Федерации.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2004 (подраздел 3.5).

Фразы, показатели, их значения, включенные в текст настоящего стандарта для учета потребностей национальной экономики Российской Федерации, выделены курсивом

Метод основан на предположении, что летучие вещества являются водой или органическими соединениями. Когда в лакокрасочном материале присутствуют другие летучие неорганические соединения, их содержание определяют другим более подходящим методом и учитывают результаты такого определения при расчетах.

Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

Оборудование

Проводят контроль и подготавливают каждый образец для испытания до состояния «готов к применению» по ГОСТ 9980.2 .

Проведение испытаний

где m i - масса i -го соединения в 1 г лакокрасочного материала, г;

r i - поправочный коэффициент для i -го соединения ();

A i - площадь пика i -го соединения;

m is - масса внутреннего эталона в испытуемом образце (), г;

m s - масса испытуемого образца (), г.

A is - площадь пика внутреннего эталона.

Примечание - Некоторые растворители такие, как бензин-нафта, при элюировании дают несколько пиков. При помощи большинства записывающих интеграторов общая площадь пиков может быть суммирована и обработана как один пик, если в этом интервале не элюируют другие соединения. Если конструкция интегратора не предусматривает такой операции в автоматическом режиме, то общую площадь суммируют вручную. Тогда приведенная выше формула может быть использована для определения количества растворителя в испытуемом образце.

Расчет

r s г/см 3 .

m w

r w г/см 3 (r w = 0,997537 г/см 3 );

r s - плотность испытуемого образца при температуре (23 ± 2) °С (), г/см 3 ;

m w - масса воды в 1 г испытуемого образца (), г;

r w - плотность воды при температуре (23 ± 2) °С, г/см 3 (r w = 0,997537 г/см 3 );

m eci - - масса фотохимически неактивного соединения в 1 г испытуемого образца, г;

Протокол испытания

Протокол испытания должен содержать следующие данные:

b) все сведения, необходимые для полной идентификации испытуемого продукта (наименование изготовителя, торговая марка, номер партии и т.д.);

c) пункты дополнительной информации, на которые дается ссылка в приложении ;

e) результаты испытания по разделу, используемый метод расчета (1:40.

Приложение С

ИСО 5725-1:1994 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения» (IDT )
Статьи по теме