Гидроэлектростанции (ГЭС). Принципиальная технологическая схема гидроэлектростанции (ГЭС) 

Электростанция, которая преобразовывает энергию воды в электроэнергию, называется гидроэлектростанцией.

Гидроэлектростанции разделяют на следующие типы:

плотинные, деривационные, аккумулирующие, волновые, приливные

Чаще всего в мире встречаются плотинные электростанции.

Основными элементами плотинной электростанции являются:

1. Дамба
2. Водохранилище
3. Задвижка
4. Напорный трубопровод
5. Генератор
6. Турбина
7. Линии электропередач

Принцип работы такой электростанции в следующем: дамба на реке приводит к возникновению небольшого водоема, выше уровня машинного зала. После открытия задвижки, вода под большим напором поступает на турбину, приводя её в движение. Турбина связана с электрогенератором, который вырабатывает электроэнергию. Электроэнергия передается потребителям по линии электропередач.


На фото изображена Саяно-Шушенская ГЭС, расположенная на реке Енисей в России

С самыми большими плотинными ГЭС можно ознакомится .

Деривационные электростанции используются в случаях, когда имеется большой перепад реки.

Основными элементами деривационной электростанции являются:

1. Водозаборное сооружение
2. Водонапорный трубопровод
3. Турбина
4. Генератор
5. Приемная плотина
6. Линии электропередач


На фото показана схема Эзминской ГЭС

Принцип работы электростанции в следующем: часть водного потока реки с помощью водозаборных сооружений попадает в водонапорный трубопровод. Поток воды приводит в движение турбину и электрогенератор.

На фото изображена ГЭС на реке Баксан в Кабардино-Балкарии

Встречаются ГЭС смешанного типа. В этом случае в месте водозабора строится небольшая плотина, для создания напора воды в трубопроводе.

Аккумулирующие электростанции используются для запаса электроэнергии, путем конвертации её в энергию воды. Такие электростанции помогают энергосистеме выдержать пиковые нагрузки. Кроме того, они обеспечивают бесперебойность энергоснабжения потребителей при использовании ветряков и солнечных панелей.

Основными элементами аккумулирующей электростанции являются:
1. Первое водохранилище
2. Второе водохранилище
3. Водонапорный трубопровод
4. Турбина
5. Генератор
6. Линии электропередач


Особенность таких электростанций в том, что их гидроагрегаты рассчитаны на работу в генераторном и насосном режиме.

Принцип работы ГАЭС в следующем: Во время пиковых нагрузок, вода через напорный трубопровод сбрасывается из верхнего водохранилища в нижнее. Приводя в движение турбину и генератор. При отсутствии пиковых нагрузок, вода таким же образом закачивается из нижнего водохранилища в верхнее.

На фото показано водохранилище электростанции Таум Сок в США

Волновые гидроэлектростанции используются для получения электроэнергии из морских волн. Существует множество конструкций таких электростанций, с основными из которых можно ознакомиться .

На фото изображена электростанция типа "Дракон"

Принцип работы данной электростанции в следующем: в результате волн, вода попадает в резервуар, находящийся выше уровня моря. Под действием силы тяжести вода стремится попасть обратно в океан, вращая при этом турбину генератора.

На первый взгляд, гидроэлектростанция штука довольно простая - льётся вода, крутится генератор, вырабатывается электричество. На самом деле современная ГЭС - система с очень сложным оборудованием и тысячами датчиков, управляемая компьютерами.

Сегодня я расскажу о том, что мало кто из обычных людей знает о ГЭС.


Сейчас я нахожусь на стройплощадке Усть-Среднеканской ГЭС, которая расположена в 400 километрах от Магадана. Подробно о ГЭС и строительстве я ещё расскажу, а сегодня несколько любопытных фактов.

1. ГЭС - возможно единственный крупный инженерный объект, который начинает эксплуатироваться задолго до окончания строительства. На Усть-Среднеканской ГЭС ещё не до конца возведена плотина, не до конца построен машинный зал, а первые два гидроагрегата из четырёх уже вырабатывают электричество.

2. Пока ГЭС строится, в её гидроагрегатах работают временные рабочие колёса, рассчитанные на малый напор воды. Когда плотина будет достроена, напор воды повысится и временные колёса заменят постоянными для высокого напора с другой формой лопастей.

3. Несмотря на то, что строительство ГЭС очень дорогое удовольствие, многие ГЭС окупаются ещё до того, как их достраивают до конца. Кстати, Усть-Среднеканская ГЭС продаёт электричество по 1.10 руб за кВтч.

4. Перед тем, как попасть на турбину ГЭС, вода закручивается с помощью огромной стальной улитки - спиральной камеры. Сейчас на Усть-Среднеканской ГЭС как раз заканчивается монтаж спиральной камеры третьего энергоагрегата и мне удалось увидеть и сфотографировать её. Когда энергоагрегат будет достроен, гигантская улитка окажется в толще бетона.

Чтобы осознать размеры конструкции, обратите внимание на рабочих, занимающихся монтажом спиральной камеры.

5. Рабочее колесо гидроагрегата всегда крутится с одинаковой скоростью, обеспечивая стабильную частоту 50 герц. Для меня всегда было загадкой, как поддерживается стабильная скорость вращения. Оказалось, просто с помощью изменения потока воды. Лопатки, управляемые компьютером, постоянно находятся в движении, уменьшая и увеличивая поток воды. Задача системы добиться точной скорости вращения независимо от усилия, с которым крутится вал генератора (а оно зависит от вырабатываемой мощности).

6. Напряжение, выдаваемое генератором, регулируется с помощью изменения напряжения возбуждения. Это постоянное напряжение, которое подаётся на электромагнит ротора. При этом напряжение, которое генерируется обмоткой статора зависит от силы магнитного поля. На фото у меня над головой вращается многотонный ротор.

7. Генератор ГЭС вырабатывает напряжение 15.75 кВ. На Усть-Среднеканской ГЭС установлены генераторы, имеющие номинальную мощность 142.5 МВт (142500000 Вт) и ток в проводах, отводящих выработанное электричество от генератора, может достигать 6150 А. Поэтому эти провода, а точнее шины, имеют огромное сечение и заключены вот в такие трубы.

Любая коммутация при таких токах превращается в большую проблему. Вот так выглядит простой выключатель. Конечно, на токе в шесть тысяч ампер и напряжении пятнадцать тысяч вольт он становится совсем непростым.

8. Повышающие трансформаторы обычно стоят на улице за машинным залом ГЭС (для передачи потребителям напряжение, полученное с генераторов, повышается чаще всего до 220 кВ).

9. По проводам линий электропередач передаётся не только электроэнергия на частоте 50 Гц, но и информационные сигналы на высокой частоте. С помощью них, например, можно с высокой точностью определить место аварии на ЛЭП. На электростанциях и подстанциях ставятся специальные фильтры высокочастотного сигнала. Наверняка, вы такие штуки видели, но вряд ли знали, для чего они.

10. Вся коммутация на высоких напряжениях происходит в среде элегаза (фторид серы, имеющий очень низкую электропроводность), поэтому провода выглядят, как трубы и электрика больше напоминает сантехнику. :)

p.s. Спасибо сотрудникам Усть-Среднеканской ГЭС Илье Горбунову и Вячеславу Сладкевичу (он на фото) за подробные ответы на мои многочисленные вопросы, а так же компании Русгидро за возможность своими глазами посмотреть на строительство и работу такого грандиозного сооружения.

2016, Алексей Надёжин

Основная тема моего блога - техника в жизни человека. Я пишу обзоры, делюсь опытом, рассказываю о всяких интересных штуках. А ещё я делаю репортажи из интересных мест и рассказываю об интересных событиях.
Добавьте меня в друзья

И, как следствие, концентрации реки в определённом месте, или деривацией - естественным потоком воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается всё энергетическое оборудование. В зависимости от назначения, оно имеет своё определённое деление. В машинном зале расположены гидроагрегаты , непосредственно преобразующие энергию потока воды в электрическую энергию. Есть ещё всевозможное дополнительное оборудование, устройства управления и контроля работы ГЭС, трансформаторная станция , распределительные устройства и многое другое.

Особенности

Классификация

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности :

  • мощные - вырабатывают от 25 МВт и выше;
  • средние - до 25 МВт;
  • малые гидроэлектростанции - до 5 МВт.

Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также ещё по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды :

  • высоконапорные - более 60 м;
  • средненапорные - от 25 м;
  • низконапорные - от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин . Для высоконапорных - ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных - поворотнолопастные турбины в железобетонных камерах.

Принцип работы всех видов турбин схож - поток воды поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передаётся на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами - стальными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов , и, соответственно, образующегося напора воды. Здесь можно выделить следующие ГЭС:

  • плотинные ГЭС . Это наиболее распространённые виды гидроэлектрических станций. Напор воды в них создаётся посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.
  • приплотинные ГЭС . Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС .
  • деривационные ГЭС . Такие электростанции строят в тех местах, где велик уклон реки. Необходимый напор воды в ГЭС такого типа создаётся посредством деривации . Вода отводится из речного русла через специальные водоотводы. Последние - спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида - безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создаётся более высокая плотина, и создаётся водохранилище - такая схема ещё называется смешанной деривацией, так как используются оба метода создания необходимого напора воды.
  • гидроаккумулирующие электростанции . Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определённые периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъёмники , способствующие навигации по водоёму, рыбопропускные , водозаборные сооружения, используемые для ирригации , и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии они используют возобновляемые природные ресурсы . В виду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций .

Преимущества и недостатки

ГЭС - это гидроэлектростанция, преобразующая энергию водного потока в электрическую. Поток воды, падая на лопасти, вращает турбины, которые, в свою очередь, приводят в движение генераторы, преобразующие механическую энергию в электрическую. Гидроэлектростанции сооружаются на руслах рек, при этом обычно строятся плотины и водохранилища.

Принцип работы

Основа работы ГЭС - это энергия падающей воды. Из-за разности уровней речная вода образует непрерывный поток от истока к устью. Плотина - неотъемлемая часть практически всех гидроэлектростанций, перекрывает движение воды в русле реки. Перед плотиной образуется водохранилище, создавая значительную разницу уровня воды до и после нее.

Верхний и нижний уровень воды называют бьефом, а разницу между ними - высотой падения или напором. Принцип работы достаточно прост. На нижнем бьефе устанавливается турбина, на лопасти которой направляется поток с верхнего бьефа. Падающий поток воды приводит в движение турбину, а она через механическую связь вращает ротор электрического генератора. Чем больше напор и количество воды, проходящее через турбины, тем выше мощность гидроэлектростанции. Коэффициент полезного действия составляет около 85%.

Особенности

Существует три фактора эффективного производства энергии на гидроэлектростанциях:

  • Круглогодичная гарантированная водообеспеченность.
  • Благоприятствующий рельеф. Наличие каньонов и перепадов способствуют гидростроительству.
  • Больший уклон реки.

Эксплуатация гидроэлектростанция имеет несколько, в том числе сравнительных особенностей:

  • Себестоимость производимой электроэнергии существенно меньше, чем на других видах электростанций.
  • Возобновляемый источник энергии.
  • В зависимости от количества энергии, которое должна производить ГЭС, ее генераторы можно быстро включать и выключать.
  • По сравнению с другими видами электростанций ГЭС намного меньше влияет на воздушную среду.
  • В основном ГЭС - это удаленные от потребителей объекты.
  • Строительство гидроэлектростанций очень капиталоемкое.
  • Водохранилища занимают большие территории.
  • Строительство плотин и устройство водохранилищ перекрывает многим видам рыб пути к нерестилищам, что кардинально меняет характер рыбного хозяйства. Но при этом в самом водохранилище устраиваются рыбоводческие хозяйства, увеличиваются запасы рыбы.

Виды

Гидроэлектростанции разделяют по характеру возведенных сооружений:

  • Приплотинные ГЭС - это самые распространенные в мире станции, в которых напор создается плотиной. Строятся на реках с преимущественно небольшим уклоном. Для создания большого напора под водохранилища затопляются значительные территории.
  • Деривационные - станции, сооружаемые на горных реках с большим уклоном. Нужный напор создается в обходных (деривационных) каналах при сравнительно малом расходе воды. Часть потока реки через водозабор направляется в трубопровод, в котором создается напор, что приводит в движение турбину.
  • Гидроаккумулирующие станции. Они помогают справиться энергосистеме с пиковыми нагрузками. Гидроагрегаты таких станций способны работать в насосном и генераторном режиме. Состоят из двух водохранилищ в разных уровнях, соединенных трубопроводом с гидроагрегатом внутри. При высоких нагрузках вода сбрасывается из верхнего водохранилища в более низкое, при этом происходит вращение турбины и вырабатывается электричество. При низком спросе вода перекачивается назад из низкого хранилища в более высокое.

Гидроэнергетика России

На сегодняшний день в России суммарно вырабатывается более 100 МВт электроэнергии на 102 гидроэлектростанциях. Общая мощность всех гидроагрегатов ГЭС России составляет порядка 45 млн кВт, что соответствует пятому месту в мире. Доля ГЭС в общем количестве вырабатываемой электроэнергии в России составляет 21 % - 165 млрд кВт*ч/год, что также соответствует 5 месту в мире. По количеству потенциальных гидроэнергоресурсов Россия стоит на втором месте после Китая с показателем 852 млрд кВт*ч, но при этом степень их освоения составляет лишь 20%, что существенно ниже, чем практически у всех стран мира, в том числе развивающихся. Для освоения гидропотенциала и развития российской энергетики в 2004 году была создана Федеральная программа по обеспечению надежной эксплуатации функционирующих гидроэлектростанций, завершение действующих строек, проектирование и возведение новых станций.

Список крупнейших ГЭС России

  • Красноярская ГЭС — г. Дивногорск, на реке Енисей.
  • Братская ГЭС — г. Братск, р. Ангара.
  • Усть-Илимская — г. Усть-Илимск, р. Ангара.
  • Саяно-Шушенская ГЭС — г. Саяногорск.
  • Богучанская ГЭС — на реке. Ангара.
  • Жигулёвская ГЭС — г. Жигулевск, р. Волга.
  • Волжская ГЭС — г. Волжский, Волгоградская обл, река Волга.
  • Чебоксарская — г. Новочебоксарск, река Волга.
  • Бурейская ГЭС — пос. Талакан, река Бурея.
  • Нижнекамская ГЭС — Челны, р. Кама.
  • Воткинская — г. Чайковский, р. Кама.
  • Чиркейская — река. Сулак.
  • Загорская ГАЭС — река. Кунья.
  • Зейская — г. Зея, р. Зея.
  • Саратовская ГЭС — река. Волга.

Волжская ГЭС

В прошлом Сталинградская и Волгоградская ГЭС, а ныне «Волжская», расположенная в одноименном городе Волжский на реке Волга, средненапорная станция руслового типа. На сегодняшний день считается крупнейшей гидроэлектростанцией в Европе. Количество гидроагрегатов - 22, электрическая мощность - 2592,5 МВт, среднегодовое количество вырабатываемой электроэнергии 11,1 млрд кВт*ч. Пропускная способность гидроузла - 25000 м3/с. Большая часть вырабатываемой электроэнергии поставляется местным потребителям.

Возведение ГЭС стартовало в 1950 году. Пуск первого гидроагрегата был осуществлен в декабре 1958. В полном объеме Волжская гидроэлектростанция заработала в сентябре 1961 года. Ввод в эксплуатацию сыграл важнейшую роль в объединении значимых энергосистем Поволжья, Центра, Юга и энергоснабжения Нижнего Поволжья и Донбасса. Уже в 2000-х годах было произведено несколько модернизаций, что позволило увеличить общую мощность станции. Кроме производства электроэнергии Волжская ГЭС используется для орошения засушливых земельных массивов Заволжья. На сооружениях гидроузла устроены автодорожные и железнодорожные переходы через Волгу, обеспечивающие связь районов Поволжья между собой.

Статьи по теме