Универсальный регулятор мощности своими руками. Регулировка температуры паяльника своими руками Регулятор для паяльника с индикацией своими руками

Паяльник — это инструмент, без которого домашнему мастеру не обойтись, но устраивает прибор не всегда. Дело в том, что обычный паяльник, не имеющий терморегулятора и нагревающийся вследствие этого до определенной температуры, обладает рядом недостатков.

Схема устройства паяльника.

Если при непродолжительной работе без регулятора температуры вполне возможно обойтись, то у обычного паяльника, длительное время включенного в сеть, его недостатки проявляются в полной мере:

  • припой скатывается с чрезмерно нагретого жала, в результате чего пайка оказывается непрочной;
  • на жале образуется окалина, которую приходится часто зачищать;
  • рабочая поверхность покрывается кратерами, а их необходимо удалять напильником;
  • он неэкономичен — в промежутках между сеансами пайки, порой достаточно длительными, продолжает потреблять из сети номинальную мощность.

Терморегулятор для паяльника позволяет оптимизировать его работу:

Рисунок 1. Схема простейшего терморегулятора.

  • паяльник не перегревается;
  • появляется возможность подобрать значение температуры паяльника, оптимальное для конкретной работы;
  • во время перерывов достаточно с помощью регулятора температуры снизить нагрев жала, а затем в нужное время быстро восстановить требуемую степень нагрева.

Конечно, в качестве терморегулятора для паяльника на напряжение 220 В можно применить ЛАТР, а для паяльника на 42 В — блок питания КЭФ-8, но они имеются не у всех. Еще один выход из положения — применение в качестве регулятора температуры промышленного светорегулятора, но они не всегда имеются в продаже.

Регулятор температуры для паяльника своими руками

Вернуться к оглавлению

Простейший терморегулятор

Это устройство состоит всего из двух деталей (рис. 1):

  1. Кнопочный выключатель SA с размыкающими контактами и фиксацией состояния.
  2. Полупроводниковый диод VD, рассчитанный на прямой ток порядка 0,2 А и обратное напряжение не ниже 300 В.

Рисунок 2. Схема терморегулятора, работающего на конденсаторах.

Работает этот регулятор температуры следующим образом: в исходном состоянии контакты выключателя SA замкнуты и ток протекает через нагревательный элемент паяльника во время как положительных, так и отрицательных полупериодов (рис. 1а). При нажатии на кнопку SA его контакты размыкаются, но полупроводниковый диод VD пропускает ток лишь во время положительных полупериодов (рис. 1б). В результате мощность, потребляемая нагревателем, уменьшается вдвое.

В первом режиме паяльник быстро прогревается, во втором — его температура несколько снижается, перегрева не наступает. В результате можно паять в довольно комфортных условиях. Выключатель вместе с диодом включают в разрыв питающего провода.

Иногда выключатель SA монтируется на подставке и срабатывает, когда паяльник кладут на нее. В перерывах между пайкой контакты выключателя разомкнуты, мощность нагревателя снижена. Когда паяльник поднимают, потребляемая мощность возрастает и он быстро нагревается до рабочей температуры.

В качестве балластного сопротивления, с помощью которого можно уменьшить мощность, потребляемую нагревателем, можно использовать конденсаторы. Чем меньше их емкость, тем больше сопротивление протеканию переменного тока. Схема простого терморегулятора, работающего на этом принципе, приведена на рис. 2. Он рассчитан на подключение паяльника мощностью 40 Вт.

Когда разомкнуты все выключатели, тока в цепи нет. Комбинируя положение выключателей, можно получить три степени нагрева:

Рисунок 3. Схемы симисторных терморегуляторов.

  1. Наименьшая степень нагрева соответствует замыканию контактов выключателя SA1. При этом последовательно с нагревателем включается конденсатор С1. Его сопротивление довольно велико, поэтому падение напряжения на нагревателе порядка 150 В.
  2. Средняя степень нагрева соответствует замкнутым контактам выключателей SA1 и SA2. Конденсаторы С1 и С2 включаются параллельно, общая емкость увеличивается вдвое. Падение напряжения на нагревателе возрастает до 200 В.
  3. При замыкании выключателя SA3 независимо от состояния SA1 и SA2 на нагреватель подается полное напряжение сети.

Конденсаторы С1 и С2 неполярные, рассчитанные на напряжение не менее 400 В. Для достижения необходимой емкости можно несколько конденсаторов соединить параллельно. Через резисторы R1 и R2 конденсаторы разряжаются после отключения регулятора от сети.

Есть еще один вариант простого регулятора, который по надежности и качеству работы не уступает электронным. Для этого последовательно с нагревателем включается переменный проволочный резистор СП5-30 или какой-нибудь иной, имеющий подходящую мощность. Например, для 40-ваттного паяльника подойдет резистор, рассчитанный на мощность 25 Вт и имеющий сопротивление порядка 1 кОм.

Вернуться к оглавлению

Тиристорный и симисторный терморегулятор

Работа схемы, приведенной на рис. 3а, очень похожа работу разобранной ранее схемы на рис. 1. Полупроводниковый диод VD1 пропускает отрицательные полупериоды, а во время положительных полупериодов ток проходит через тиристор VS1. Доля положительного полупериода, в течение которого тиристор VS1 открыт, зависит в конечном счете от положения движка переменного резистора R1, регулирующего ток управляющего электрода и, следовательно, угол отпирания.

Рисунок 4. Схема симисторного терморегулятора.

В одном крайнем положении тиристор открыт в течение всего положительного полупериода, во втором — полностью закрыт. Соответственно, мощность, рассеиваемая на нагревателе, меняется от 100% до 50%. Если отключить диод VD1, то мощность будет меняться от 50% до 0.

На схеме, приведенной на рис. 3б, тиристор с регулируемым углом отпирания VS1 включен в диагональ диодного моста VD1-VD4. Вследствие этого регулировка напряжения, при котором отпирается тиристор, происходит как во время положительного, так и в течение отрицательного полупериода. Мощность, рассеиваемая на нагревателе, меняется при повороте движка переменного резистора R1 от 100% до 0. Можно обойтись и без диодного моста, если в качестве регулирующего элемента применить не тиристор, а симистор (рис. 4а).

При всей привлекательности терморегулятор с тиристором или симистором в качестве регулирующего элемента обладает следующими недостатками:

  • при скачкообразном нарастании тока в нагрузке возникают сильные импульсные помехи, проникающие затем в осветительную сеть и эфир;
  • искажение формы сетевого напряжения за счет внесения в сеть нелинейных искажений;
  • снижение коэффициента мощности (cos ϕ) за счет внесения реактивной составляющей.

Для сведения к минимуму импульсных помех и нелинейных искажений желательна установка сетевых фильтров. Самое простое решение — ферритовый фильтр, представляющий собой несколько витков провода, намотанных на ферритовое кольцо. Такие фильтры применяют в большинстве импульсных блоков питания электронных устройств.

Ферритовое кольцо можно взять из проводов, соединяющих системный блок компьютера с периферийными устройствами (например, с монитором). Обычно на них есть цилиндрическое утолщение, внутри которого находится ферритовый фильтр. Устройство фильтра показано на рис. 4б. Чем больше витков, тем выше качество фильтра. Размещать ферритовый фильтр следует как можно ближе к источнику помех — тиристору или симистору.

В устройствах с плавным изменением мощности следует откалибровать движок регулятора и отметить маркером его положения. При настройке и установке следует отключить устройство от сети.

Схемы всех приведенных устройств достаточно просты и их в состоянии повторить человек, обладающий минимальными навыками в сборке электронных устройств.


Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя . Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Внимание, ниже приведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы опасно для жизни!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление межу анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение межу его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.


Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.


Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания . Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.


Работает схема регулятора температуры следующим образом. Напряжение переменного тока от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4).

Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться.

Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служить для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.

Конструкция и детали регулятора температуры

Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами.


Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется.


Микросхемы DD1 и DD2 любые 176 или 561 серии. Советский тиристор КУ103В можно заменить, например, современным тиристором MCR100-6 или MCR100-8, рассчитанные на ток коммутации до 0,8 А. В таком случае можно будет управлять нагревом паяльника мощностью до 150 Вт. Диоды VD1-VD4 любые, рассчитанные на обратное напряжение не менее 300 В и ток не менее 0,5 А. Отлично подойдет IN4007 (Uоб=1000 В, I=1 А). Диоды VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9 В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт.

Регулятор мощности настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу.

Схема разработана много лет назад, когда компьютеров и тем более лазерных принтеров не было в природе и поэтому чертеж печатной платы я делал по дедовской технологии на диаграммной бумаге с шагом сетки 2,5 мм. Затем чертеж приклеивал клеем «Момент» на плотную бумагу, а саму бумагу к фольгированному стеклотекстолиту. Далее сверлились отверстия на самодельном сверлильном станке и руками вычерчивались дорожки будущих проводников и контактные площадки для пайки деталей.


Чертеж тиристорного регулятора температуры сохранился. Вот его фотография. Изначально выпрямительный диодный мост VD1-VD4 был выполнен на микросборке КЦ407, но после того, как два раза микросборку разорвало, заменил ее четырьмя диодами КД209.

Как снизить уровень помех от тиристорных регуляторов

Для уменьшения помех излучаемых тиристорным регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров. Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех.

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.

Паяльник с регулировкой температуры позволяет при низкотемпературной пайке и лужении для нагрева деталей, флюса и припоя устанавливать необходимую температуру пайки, в зависимости от используемых материалов, а также эффективно бороться с таким явлением, как перегрев жала. Такой инструмент еще называют регулируемым или с регулятором мощности. При этом мощность колеблется в пределах от 3 до 400 Вт, что позволяет одним и тем же паяльником паять микросхемы, радиокомпоненты, провода, крупные детали, изготовленные из разных металлов и даже не металлов, обеспечивать плотную посадку, устранять пористость и т.д.

Особенности конструкции и преимущества

Производители российские и зарубежные выпускают устройства для паяния с регулятором мощности в 3 исполнениях:

  • со встроенным в корпус (инструмент имеет небольшую мощность);
  • в виде отдельно расположенного блока с регулированием температуры в широких пределах;
  • в составе паяльных станций.

В конструкции маломощного паяльника может присутствовать поворотный диммер (светорегулятор), который позволяет менять величину электрической мощности, то увеличивая ее, то уменьшая. Включается в разрыв питающего кабеля. В этом случае температура нагрева регулируется за счет падения напряжения, что приводит к падению мощности.

Простейший регулятор напряжения имеет всего 2 диапазона регулирования. Может устанавливаться максимальная температура, на которую он рассчитан, для выполнения процесса пайки и минимальная, позволяющая поддерживать температуру нагрева жала.

С помощью паяльной станции регулировка температуры жала инструмента осуществляется с высокой точностью. При этом если станция оснащена термофеном, то это позволяет выполнять пайку без ограничения величины мощности. Блок питания и электронная система управления находятся в отдельном блоке. Правильно подобранная паяльная станция обеспечит высочайшее качество пайки любых компонентов электронных схем.

Преимущество инструмента, оснащенного регулятором мощности:

  • при паянии исключается порча чувствительных к температуре паяния деталей и не отслаиваются дорожки на плате;
  • на работоспособность не влияет смена марки припоя;
  • флюс не дымит;
  • не изнашивается жало;
  • не перегревается жало;
  • экономится потребление электрической энергии;
  • продлевается срок эксплуатации инструмента.

Покупные конструкции таких устройств с регулировкой температуры стоят не дешево, цена на них зависит от конструктивных особенностей. Особенно дорого стоят паяльные станции с термофеном. Поэтому при наличии определенных навыков и знаний можно самому изготовить как простейшей, так и более сложной конструкции регулируемый паяльник.

Регулятор мощности для паяльника своими руками можно собрать по схемам примитивным и, задействовав микропроцессор с отображением информации. Это зависит от желания, квалификации и возможностей того, кто хочет сделать такое устройство, ведь конечный результат паяния определяет качество работы любого устройства, где в схеме присутствуют электронные компоненты. Потратив немного времени, можно имеющийся в наличии паяльник сделать регулируемым.

Простейший регулятор мощности из проволочного резистора

Простейший регулятор температуры паяльника своими руками можно создать, применив всего 2 элемента: проволочный резистор мощностью 25 Вт, сопротивлением 1кОм (СП5-30) и ручку поворотного типа. Резистор необходимо заключить в корпус (обязательно выполненный из диэлектрического материала), надежно закрепив его там. Остается на ось резистора надеть ручку и можно плавно регулировать мощность. На корпусе проделываются гнезда для вилки, или подпаиваются провода паяльника, а также устанавливается шкала. Простейшее устройство готово.

Обратите внимание! Мощность такого инструмента не превышает 25 Вт.

Регулятор мощности двухступенчатый

Для изготовления двухступенчатого устройства понадобится 2 элемента: выпрямительный диод 1N4007 на ток от 1 А и выключатель. Регулируют изделие следующим образом: при включении в рабочее положение выключателя на жало подается напряжение, при размыкании оно падает наполовину, что позволяет поддерживать температуру жала в щадящем режиме, т.е. он не перегревается и не остывает. Устройство хорошо себя зарекомендовало в тех случаях, когда приходится делать перерывы в работе.

Детали включаются параллельно друг другу в разрыв питающих проводов. Можно схему дополнить светодиодом, включив его на выход регулятора. По степени яркости свечения определяется выходное напряжение. При этом в схеме обязательно должен присутствовать ограничивающий резистор. Он включается последовательно со светодиодом.

Двухрежимная схема на тиристоре

Прибор, изготовленный по схеме, указанной на рис. ниже, применяется для паяльников мощностью не выше 40 Вт. Потребуется диод с током не более 1 А на напряжение 400 В, тиристор КУ101Г и резистор СП-1. Собирается в корпусе от зарядного устройства, вышедшего из строя, или для этих целей можно применить любую другую коробку из пластика. Можно использовать корпус розетки удлинителя одинарный или тройник.

Для паяльников большой мощности (до 300 Вт) регулятор собирается по схеме, указанной на рис. выше.

Здесь 2 части (силовая и управляющая) выполнены отдельно. Работает такое устройство следующим образом: когда тиристор закрыт (его работой управляют 2 транзистора), на жало подается половина напряжения питания. Резистор R2 регулирует температуру в диапазоне 50 ÷ 100%. Все детали необходимо разместить на плате (см. рис. ниже), которую затем разместить в корпусе розетки-удлинителя или любом другом, у котрого размеры будут подходить.

Обратите внимание! Все выводы компонентов должны быть изолированы термоусадочной трубкой, чтобы предотвратить замыкание.

Регулятор мощности с отображением информации

На рисунке выше изображена принципиальная схема терморегулятора на микроконтроллере. С его помощью отображается уровень мощности на индикаторе и осуществляется отключение прибора, если он длительное время не работает. Информация о мощности отображается цифрами от 0 до 9, где ноль означает, что устройство не включено. Цифры от 1 до 9 символизируют уровень освещенности, где 9 свидетельствует о работе на полную мощность. С помощью 2 кнопок можно уменьшать или увеличивать величину напряжения.

Устройство имеет 2 модуля (платы): силовую и цифровую. Собран регулятор для паяльника на широко распространенном микроконтроллере PIC16F628A. Тактирование выполняется встроенным генератором на частоте 4 МГц. Силовая плата имеет элементы без трансформаторного питания и фильтр, служащий для понижения помех. На цифровой плате расположены такие компоненты, как микроконтроллер и индикатор семисегментный.

Переменное сопротивление регулирует длительность импульсов. Можно все элементы схемы расположить и на одной плате, но это сделает устройство громоздким. А так 2 эти платы поместятся в небольшом корпусе, например, пластмассовой мыльнице.

Регулятор мощности с использованием симистора

Симистор – это два тиристора, соединенных вместе. Это позволяет проводить ток в обоих направлениях. С его помощью мощность регулируется от 0 до 100%. В первом случае для создания схемы понадобится всего 7 деталей (2 резистора, конденсатор, диод, динистор, симистор и светодиод), во втором – 11 деталей (5 резисторов, диодный мост, 2 конденсатора, 2 диода и симистор). На схемах указаны их номиналы.

Проверка работоспособности

По какой бы схеме ни было изготовлено устройство своими руками, его работоспособность необходимо проверить. В рабочую цепь должен включаться сам паяльник. Он является нагрузкой.

В конструкциях терморегуляторов для паяльников, где в схемах задействован светодиод, это сделать просто. Изменение яркости свечения говорит о том, что созданная конструкция работает. Для остальных проверку необходимо осуществлять с подключенной к схеме лампой накаливания. При наличии в цепи последовательно расположенного светодиода с резистором проверку осуществляют с помощью индикатора. Если он не будет светиться, то необходимо осуществить регулировку, т.е. подобрать резистор.

Обратите внимание! Для паяльников мощностью 100 Вт и выше в схемах регулятора необходимо симисторы или тиристоры устанавливать на радиаторы.

Регулятор мощности, сделанный собственными руками или купленный в торговой сети, позволит в процессе пайки использовать ту температуру нагрева жала, которая будет качественно соединять необходимые компоненты. Это позволит избежать таких неприятностей, как порча деталей или выход их из строя, улучшит процесс пайки и сэкономит потребление электроэнергии.

Видео

Основным регулирующим элементом многих схем является тиристор или симистор. Давайте рассмотрим несколько схем построенных на этой элементной базе.

Вариант 1.

Ниже представлена первая схема регулятора, как видите проще наверно уже и некуда. Диодный мост собран на диодах Д226, в диагональ моста включен тиристор КУ202Н со своими цепями управления.

Вот еще одна подобная схема, которую можно встретить в интернете, но на ней мы останавливаться не будем.

Для индикации наличия напряжения можно дополнить регулятор светодиодом, подключение которого показано на следующем рисунке.

Перед диодным мостом по питанию можно врезать выключатель. Если будете применять в качестве выключателя тумблер, проследите, чтобы его контакты могли выдерживать ток нагрузки.

Вариант 2.

Этот регулятор построен на симисторе ВТА 16-600. Отличие от предыдущего варианта в том, что в цепи управляющего электрода симистора стоит неоновая лампа. Если остановите выбор на этом регуляторе, то неонку нужно будет выбрать с невысоким напряжением пробоя, от этого будет зависеть плавность регулировки мощности паяльника. Неоновую лампочку можно выкусить из стартера, применяемого в светильниках ЛДС. Емкость С1 – керамическая на U=400В. Резистором R4 на схеме обозначена нагрузка, которую и будем регулировать.

Проверка работы регулятора осуществлялась с применением обычного настольного светильника, смотри фото ниже.

Если использовать данный регулятор для паяльника мощностью не выше 100 Вт, то симистор не нуждается в установке на радиатор.

Вариант 3.

Эта схема чуть сложнее предыдущих, в ней присутствует элемент логики (счетчик К561ИЕ8), применение которого позволило регулятору иметь 9 фиксированных положений, т.е. 9 ступеней регулирования. Нагрузкой так же управляет тиристор. После диодного моста стоит обычный параметрический стабилизатор, с которого берется питание для микросхемы. Диоды для выпрямительного моста выбирайте такие, чтобы их мощность соответствовала той нагрузке, которую вы будете регулировать.

Схема устройства показана на рисунке ниже:

Спавочный материал по микросхеме К561ИЕ8:

Диаграмма работы микросхемы К561ИЕ8:

Вариант 4.

Ну и последний вариант, который мы сейчас рассмотрим, как самому сделать паяльную станцию с функцией регулирования мощности паяльника.

Схема довольно распространенная, не сложная, многими уже не раз повторяемая, никаких дефицитных деталей, дополнена светодиодом, который показывает, включен или выключен регулятор, и узлом визуального контроля установленной мощности. Выходное напряжение от 130 до 220 вольт.

Так выглядит плата собранного регулятора:

Доработанная печатная плата выглядит вот так:

В качестве индикатора была использована головка М68501, такие раньше стояли в магнитофонах. Головку было решено немного доработать, в правом верхнем углу установили светодиод, он и включение/отключение покажет, и шкалу мал-мал подсветит.

Дело осталось за корпусом. Его было решено сделать из пластика (вспененного полистирола), который применяется для изготовления всякого рода реклам, легко режется, хорошо обрабатывается, склеивается намертво, краска ровно ложится. Вырезаем заготовки, зачищаем края, клеим “космофеном” (клей для пластика).

Многие паяльники продаются без регулятора мощности. При включении в сеть температура повышается до максимальной и остаётся в таком состоянии. Для её регулировки нужно отключать прибор от источника питания. У таких паяльников флюс моментально испаряется, образуются окислы и жало находится в постоянно загрязнённом состоянии. Его приходится часто чистить. Для припаивания больших компонентов нужна высокая температура, а маленькие детали можно сжечь. Во избежание таких проблем делают регуляторы мощности.

Как сделать надёжный регулятор мощности для паяльника своими руками

Регуляторы мощности помогают управлять степенью нагрева паяльника.

Подключение готового регулятора мощности нагрева

Если у вас нет возможности или желания возиться с изготовлением платы и электронными компонентами, то можете купить готовый регулятор мощности в магазине радиотоваров или заказать в интернете. Регулятор ещё называют диммером. В зависимости от мощности, устройство стоит 100–200 рублей. Возможно, после покупки вам придётся немного доработать его. Диммеры до 1000 Вт обычно продаются без радиатора охлаждения.

Регулятор мощности без радиатора

А устройства от 1000 до 2000 Вт с маленьким радиатором.

Регулятор мощности с маленьким радиатором

И только более мощные продаются с большими радиаторами. Но на самом деле, диммер от 500 Вт должен иметь небольшой радиатор охлаждения, а от 1500 Вт уже устанавливают крупные алюминиевые пластины.

Китайский регулятор мощности с большим радиатором

Учтите это при подключении прибора. Если необходимо, установите мощный радиатор охлаждения.

Доработанный регулятор мощности

Для правильного подключения устройства к цепи посмотрите на обратную сторону печатной платы. Там указаны клеммы входа IN и выхода OUT. Вход подключается к сетевой розетке, а выход к паяльнику.

Обозначение клемм входа и выхода на плате

Монтаж регулятора производится разными способами. Для их осуществления не нужны специальные знания, а из инструментов вам понадобятся только нож, дрель и отвёртка. Например, можно включить диммер в шнур питания паяльника. Это самый лёгкий вариант.

  1. Разрежьте кабель паяльника на две части.
  2. Подключите оба провода к клеммам платы. Отрезок с вилкой прикрутите ко входу.
  3. Подберите подходящий по размеру пластиковый корпус, проделайте в нём два отверстия и установите туда регулятор.

Ещё один простой способ: можно установить регулятор и розетку на деревянную подставку.

К такому регулятору можно подключать не только паяльник. Теперь рассмотрим более сложный, но компактный вариант.

  1. Возьмите большую вилку от ненужного блока питания.
  2. Извлеките из неё имеющуюся плату с электронными компонентами.
  3. Просверлите отверстия для ручки диммера и двух клемм под входную вилку. Клеммы продаются в радиомагазине.
  4. Если ваш регулятор со световыми индикаторами, то для них тоже сделайте отверстия.
  5. Установите в корпус вилки диммер и клеммы.
  6. Возьмите переносную розетку и включите в сеть. В неё вставьте вилку с регулятором.

Это устройство, как и предыдущее, позволяет подключать разные приборы.

Самодельный двухступенчатый регулятор температуры

Самый простой регулятор мощности - двухступенчатый. Он позволяет переключаться между двумя значениями: максимальным и половиной от максимального.

Двухступенчатый регулятор мощности

Когда цепь в разомкнутом состоянии, ток протекает через диод VD1. Выходное напряжение 110 В. При замыкании цепи выключателем S1 ток обходит диод, так как он подключён параллельно и на выходе получается напряжение 220 В. Диод подбирайте в соответствии с мощностью вашего паяльника. Выходная мощность регулятора рассчитывается по формуле: P = I * 220, где I - ток диода. Например, для диода с током 0,3 А мощность считается так: 0,3 * 220 = 66 Вт.

Так как наш блок состоит всего из двух элементов, то его можно разместить в корпусе паяльника с помощью навесного монтажа.

  1. Припаяйте параллельно детали микросхемы друг к другу непосредственно с использованием лапок самих элементов и проводов.
  2. Соедините с цепью.
  3. Залейте всё эпоксидной смолой, которая служит изолятором и защитой от смещений.
  4. В рукояти сделайте отверстие под кнопку.

Если корпус очень мал, то воспользуйтесь переключателем для светильника. Вмонтируйте его в шнур паяльника и вставьте параллельно выключателю диод.

Переключатель для светильника

На симисторе (с индикатором)

Рассмотрим простую схему регулятора на симисторе и изготовим печатную плату для него.

Регулятор мощности на симисторе

Изготовление печатной платы

Так как схема очень простая, нет смысла из-за неё одной устанавливать компьютерную программу для обработки электросхем. Тем более что для печати нужна специальная бумага. И не у всех есть лазерный принтер. Поэтому пойдём самым простым путём изготовления печатной платы.

  1. Возьмите кусок текстолита. Отрежьте необходимый для микросхемы размер. Поверхность зашкурьте и обезжирьте.
  2. Возьмите маркер для лазерных дисков и нарисуйте схему на текстолите. Чтобы не ошибиться, сначала рисуйте карандашом.
  3. Далее, приступаем к травлению. Можно купить хлорное железо, но после него плохо отмывается раковина. Если случайно капните на одежду, останутся пятна, которые невозможно до конца вывести. Поэтому будем использовать безопасный и дешёвый метод. Подготовьте пластиковую ёмкость для раствора. Влейте перекись водорода 100 мл. Добавьте пол столовой ложки соли и пакетик лимонной кислоты до 50 г. Раствор делается без воды. С пропорциями можно экспериментировать. И всегда делайте свежий раствор. Медь должна вся стравиться. На это уходит около часа.
  4. Промойте плату под струёй колодной воды. Высушите. Просверлите отверстия.
  5. Протрите плату спирто - канифольным флюсом или обычным раствором канифоли в изопропиловом спирте. Возьмите немного припоя и залудите дорожки.

Для нанесения схемы на текстолит можно сделать ещё проще. Нарисовать схему на бумаге. Приклеить её скотчем к вырезанному текстолиту и просверлить отверстия. И только после этого рисовать схему маркером на плате и травить её.

Монтаж

Подготовьте все необходимые компоненты для монтажа:

  • катушка с припоем;
  • штырьки в плату;
  • симистор bta16;
  • конденсатор на 100 нФ;
  • постоянный резистор на 2 кОм;
  • динистор db3;
  • переменный резистор с линейной зависимостью на 500 кОм.

Приступайте к монтажу платы.

  1. Откусите четыре штырька и впаяйте их в плату.
  2. Установите динистор и все остальные детали, кроме переменного резистора. Симистор припаивайте последним.
  3. Возьмите иглу и щёточку. Почистьте промежутки между дорожками, чтобы убрать возможное замыкание.
  4. Возьмите алюминиевый радиатор для охлаждения симистора. Просверлите в нём отверстие. Симистор свободным концом с отверстием будет закреплён на алюминиевый радиатор для охлаждения.
  5. Мелкой наждачной бумагой зачистьте область крепления элемента. Возьмите теплопроводящую пасту марки КПТ-8 и нанесите небольшое количество пасты на радиатор.
  6. Закрепите симистор винтом и гайкой.
  7. Аккуратно отогните плату так, чтобы симистор принял вертикальное положение по отношению к ней. Для того чтобы конструкция стала компактной.
  8. Так как все детали нашего устройства находятся под напряжением сети, для регулировки будем применять ручку из изолирующего материала. Это очень важно. Металлические держатели здесь применять опасно для жизни. Оденьте пластмассовую ручку на переменный резистор.
  9. Кусочком провода соедините крайний и средний выводы резистора.
  10. Теперь к крайним выводам припаяйте два провода. Противоположные концы проводов соедините с соответствующими выводами на плате.
  11. Возьмите розетку. Снимите верхнюю крышку. Подсоедините два провода.
  12. Припаяйте к плате один провод от розетки.
  13. А второй подключите к проводу двухжильного сетевого кабеля с вилкой. У сетевого шнура осталась одна свободная жила. Её припаяйте к соответствующему контакту на печатной плате.

Фактически получается, что регулятор включён последовательно в цепь питания нагрузки.

Схема подключения регулятора к цепи

Если захотите установить светодиодный индикатор в регулятор мощности, то используйте другую схему.

Схема регулятора мощности со светодиодным индикатором

Здесь добавлены диоды:

  • VD 1 - диод 1N4148;
  • VD 2 - светодиод (индикация работы).

Схема с симистором слишком громоздкая для включения в рукоять паяльника, как в случае с двухступенчатым регулятором, поэтому её надо подключить снаружи.

Установка конструкции в отдельный корпус

Все элементы этого устройства находятся под напряжением сети, поэтому нельзя использовать металлический корпус.

  1. Возьмите пластиковую коробочку. Наметьте, как в ней будет размещаться плата с радиатором и с какой стороны подключать сетевой шнур. Просверлите три отверстия. Два крайних нужны для крепления розетки, а среднее для радиатора. Головка винта, к которому будет крепиться радиатор, должна быть спрятана под розеткой по причине электробезопасности. Радиатор имеет контакт со схемой, а она имеет непосредственный контакт с сетью.
  2. Сделайте ещё одно отверстие сбоку корпуса для сетевого кабеля.
  3. Установите винт крепления радиатора. С обратной стороны наденьте шайбу. Прикрутите радиатор.
  4. Просверлите отверстие соответствующего размера под потенциометр, то есть под ручку переменного резистора. Вставьте деталь в корпус и закрепите штатной гайкой.
  5. Наложите розетку на корпус и просверлите два отверстия под провода.
  6. Закрепите розетку двумя гайками на М3. Вставьте провода в отверстия и закрутите крышку винтом.
  7. Проложите провода внутри корпуса. Один из них припаяйте к плате.
  8. Другой к жиле сетевого кабеля, который предварительно вставьте в пластиковый корпус регулятора.
  9. Заизолируйте место соединения изолентой.
  10. Свободный провод шнура соедините с платой.
  11. Закройте корпус крышечкой и закрутите винтами.

Регулятор мощности включается в сеть, а паяльник - в розетку регулятора.

Видео: монтаж схемы регулятора на симисторе и сборка в корпусе

На тиристоре

Регулятор мощности можно сделать на тиристоре bt169d.

Регулятор мощности на тиристоре

Компоненты схемы:

  • VS1 - тиристор BT169D;
  • VD1 - диод 1N4007;
  • R1 - резистор 220k;
  • R3 - резистор 1k;
  • R4 - резистор 30k;
  • R5 - резистор 470E;
  • C1 - конденсатор 0,1mkF.

Резисторы R4 и R5 являются делителями напряжения. Они снижают сигнал, так как тиристор bt169d маломощный и очень чувствителен. Схема собирается аналогично регулятору на симисторе. Так как тиристор слабый, он не будет перегреваться. Поэтому радиатор охлаждения не нужен. Такую схему можно вмонтировать в небольшой коробок без розетки и соединить последовательно с проводом паяльника.

Регулятор мощности в маленьком корпусе

Схема на мощном тиристоре

Если в предыдущей схеме заменить тиристор bt169d на более мощный ку202н и убрать резистор R5, то выходная мощность регулятора повысится. Такой регулятор собирается с радиатором на тиристоре.

Схема на мощном тиристоре

На микроконтроллере с индикацией

Простой регулятор мощности со световой индикацией можно сделать на микроконтроллере.

Схема регулятора на микроконтроллере ATmega851

Подготовьте следующие компоненты для его сборки:


С помощью кнопок S3 и S4 будет меняться мощность и яркость светодиода. Схема собирается аналогично предыдущим.

Если вы хотите, чтобы прибор показывал процент выдаваемой мощности вместо простого светодиода, то используйте другую схему и соответствующие компоненты, включая числовой индикатор.

Схема регулятора на микроконтроллере PIC16F1823

Схему можно вмонтировать в розетку.

Регулятор на микроконтроллере в розетке

Проверка и регулировка схемы блока терморегулятора

Перед подключением блока к инструменту испытайте его.

  1. Возьмите собранную схему.
  2. Соедините её с сетевым проводом.
  3. Подключите лампу на 220 к плате и симистору или тиристору. В зависимости от вашей схемы.
  4. Сетевой провод воткните в розетку.
  5. Вращайте ручку переменного резистора. Лампа должна менять степень накаливания.

Схема с микроконтроллером проверяется аналогично. Только на цифровом индикаторе ещё будет отображаться процент выходной мощности.

Для регулировки схемы меняйте резисторы. Чем больше сопротивление, тем меньше мощность.

Нередко приходится ремонтировать или дорабатывать разные приборы, используя паяльник. От качества пайки зависит работа этих устройств. Если вы приобрели паяльник без регулятора мощности, то обязательно установите его. При постоянном перегреве пострадают не только электронные компоненты, но и ваш паяльник.

Статьи по теме